
We conider a machine M_{i}^{*} that fon the masimane load, and we comider the last jof j^{*} thectuled on $M_{i} *$.f $j^{*} \leq m$, tha j^{*} is therry got theduled on $M_{*} *$ - than is ture berause the greedy alpoith scledules to foivt migots on differest nushines. Here, our alprithon sontimel it this we. Nov insider the ane $j^{k}>m$.
Here, we a derive that

Thw, we get that

$$
\operatorname{load}\left(M_{i}^{*}\right)=\operatorname{load}^{\prime}\left(M_{i}^{*}\right)+t_{j *} \leq \underbrace{\frac{1}{m}\left(\sum_{i j \leq \leq n} t_{j}\right)}+\left(1-\frac{1}{n}\right) t_{j *}
$$

Irm lenno 1.3, it fellows that the firutterm illourded by OPT; thes, weget

$$
\operatorname{load}\left(M_{i} *\right) \leq O P T+\left(1-\frac{1}{m}\right) t_{j}{ }^{*}
$$

$$
t_{j} \stackrel{y}{=} t_{m+1} \stackrel{y}{x_{0} t^{4}=4}=\frac{t_{m+}+t_{m+1}}{2} \leq \frac{\text { OpT }}{2}
$$

Conkining the meriow two hequalites, we get

$$
\begin{aligned}
\operatorname{lond}\left(M_{i^{*}}\right) & \leq O P T+\left(1-\frac{1}{2_{n}}\right) \frac{1}{2} O P T \\
& =O P T\left(1+\frac{1}{2}-\frac{1}{2 m}\right) \\
& =\left(\frac{3}{2}-\frac{1}{2 m}\right) O P T
\end{aligned}
$$

