(i) To detemine alondon the ayrusenation ate of Gruedy - CNF,
we first conider that the alouition noy setura a soubion of ine
 we amider the follonizg inverinat over the lon in th alfoithen

 Mint of innvinas:

 nus umies that all ternision clanses do nt surtain ay
 abory at tere chaves did wot cothiary vribite ett the

 we un mow mandude it must fold of of the itrutionen well.

the invuine hides tivinlly.

 of the eon. This implies at most $n-2$ venibles an bes sets twe by

 we will fyvot trace)。

The gives is that

Gceay -CNF (C, x)	$\leq n-2$
	$=(n-2) \cdot \angle B$
	$\leq(n-2) \cdot O P T$,

(ii)

```
8.)
```



```
    M
```


ket 2 be the rumber of iteration there by the lon
in the une, we car sectrot a lover Vound on the sime of OPT is given by x; at lest one voioble from eaca chaue eelected must best to the, since othewber, there vould be at leatonecluse withurit ayy voriabesett to twe

Inctlenore, the algoitth sets 32 variables to twe (hy defitition of x and line 2 of ofte alooitem. This guves

$$
\begin{aligned}
3-\text { Graedy }-C N F(C, X) & =32 \\
& \leq 3 . \angle B \\
& \leq 3.0 P T
\end{aligned}
$$

Pry proves that 3-Greely -CNF is 3-aprosoingtion algritim.
(iii)
$\operatorname{LPR}-C_{N F}(C, x)$

1. Solve the relosed linear progun coveryority t the giverablen

minimive $\sum_{i=1}^{n} \lambda_{i}$

2. 2hutice $\leftarrow\left\{x_{i} \in X \left\lvert\, d_{i} \geq \frac{1}{3}\right.\right\}$
3. return shation
$A L G(I)=$ nuber forminblesects twe
$=\left|x^{*}\right|$
$=\varepsilon_{x_{x \in x^{*}}}$
$\leq \sum_{x_{i} \in x^{*}} 3 y_{i} \quad$ mine $x_{i} \geq \frac{1}{3}$ forall $x_{i} \in \chi^{*}$

$$
\leq \sum_{i=1}^{n}, 3 y_{i} \quad \text { ince yizo ofo } l_{1} \leq i \leq n
$$

$=3 \sum_{i=1}^{n} y_{i}$
$=3 \mathrm{LB}(\mathrm{I})$

