
$I G=\frac{2}{\left(\frac{1}{3}\right)}=\frac{6}{4}=\frac{3}{2}$

(i) \& (ii)
double-vertes-cover (V, E)

1. $d \leftarrow$ numer of elonests in the first elenert of E.
2. $n \leftarrow|V|$ musterof eretice
3. Sohe the relased liven puym corveronsig to the give pubber
$x_{\text {ininive }} \sum_{i=1}^{n} x_{i}$
 $0 \leq x_{i} \leq 1 \quad$ for all $1 \leq i \leq n$

$$
\begin{aligned}
& \text { the sum of the decisinn variates. }
\end{aligned}
$$

4. 2 bution $\leftarrow\left\{v_{i} \in V \left\lvert\, x_{i} \geq \frac{1}{d-1}\right.\right\}$
5. retion yoution

Sor this alpaitent be correct, we must havestat, for every d-elge, at least two vertices areinchuded in the cover. Siree the vourding thresthel is conthant, we frow that, for tur vertices to beirehided in the soer, the too vertices with the highest decision vacible valkes must both heat least $\frac{1}{d-1}$. Finat of all, werve that, fon the forst constrait to be satiffed, we must have that all decisim misables for a gise edge havea vabue of at least
 anory then. Hewewer, wince $\frac{2}{d} \geq \frac{1}{d-1}$ fod $1 \geq 2$, we huvethat the at lenst ore varible must haven value abve the thestbld. To see why a second vacinle must heabovethe coubsaswell, we wete that, by the ecord contriat (i.e. $0 \leq x_{i} \leq$ ifor all $1 \leq i \leq n$), the value of the hiflest -valued decision variblle can be at most, The, for the first contriat to besotiffied, we need that the averugovalue of the $d-1$ derision variably with the lowest volues is at least $\frac{2-1}{d-1}=\frac{1}{d-1}$. Iron then, it follows that at least oneop the $d-1$ vocinbles with the lovest maes hasa velue above oc equab to the theabol. This inglies at least two vertices for each d-edge meincluced it the cover, which roves thecovecthess of siid cover.
Apruspintanntio we have that $O P T \geqslant O P T_{\text {relosed }}=\sum_{i=1}^{n} x_{i}$

$\leq(d-1) \sum_{v_{i} \in \tan t_{i}} x_{i}$
$\leq(d-1) \sum_{i=1}^{n} x_{i}$
$\leq(d-1)$ OP $T_{\text {reharat }}$
$\leq(d-1) O p T$
This prwes doute-verts-creer isa (d-1)- apprasiontion algotiten
(iii) Conider the sesmple below

 ravel (addoreth relestel).
This gies that theinteraligy guy most be at least $\frac{2}{\left(\frac{4}{3}\right)}=\frac{6}{4}=\frac{3}{2}$

But, we cando better. Tobe a cosevith nvertices, and thayes

