(i) See abore for the formulation. Roughly, this magram can be sapised as follows: The term x ifi igives the ast of brilling distributan vit i, if andory if ts is bild
The term $\sum_{1 \leq j \leq m} y_{i j} i_{i, j}$ gives the cost of building smmetions between hoves and the distifution point i, oryjif sid conections are buibt. Thus, the sem of these terms givestle thal cost asscrinted with distribution pait i; Jemmiggoverall distributon prows ta gives the thal ont which we want to minimize.
The construnts cubbe explaied a follows:

1. The first contruint stites thad every fovse shuld bueat last one comection bielf.
2. The seand contrints stes that whe vor a conection belween house and distribution pint i has bea buibt, distilution point i should abs be buitt. note: since building

3/4. These are tyrial 0/1- anstrints.
(i i) The algoith cold beas follows

> Power- $\operatorname{costs}\left(U, H,\left\{f_{1}, \cdots, f_{n}\right\},\left\{g_{1,1}, \ldots, g_{n}, n\right\}\right)$
> 1. $n \leftarrow|u|$
> 2. $m \leftarrow|H|$
> 3. Solve the relosed binar roogrom soresponting the given pablem

```
Minimize \(\sum_{1 \leq i \leq n}\left(\left(x_{i} \cdot f_{i}\right)+\sum_{1 \leq j \leq m}\left(y_{i, j} \cdot g_{i, j}\right)\right)\)
Subject to:
- \(\sum_{i \in\left\{1 \leq i \leq n \mid u_{i} \in U\left(h_{i}\right)\right\}} y_{i, j} \geq 1\) for all \(1 \leq j \leq m\)
- \(n \cdot x_{i}-\sum_{1 \leq j \leq n} y_{i, j} \geq 0\) for \(1 \leq i \leq n \quad\) altomatively: \(y_{i}, j \leq x_{i} \quad\) for all \(\left(u_{i}, R_{j}\right) \in U X H\)
- \(x_{i} \in\{0,1\}\) for \(1 \leq i \leq n\)
- \(y_{i, j} \in\{0,1\}\) for \(1 \leq i \leq n\) and \(1 \leq j \leq m\)
```


6. retion (20el 2 , l C)

Moof of wrectress

```
To see why this algorithm returns valid solution, we prove the folowing statements:
.1. If connection betwen a house h; anda distribution noint u}\mp@subsup{u}{i}{\mathrm{ is buil, then the distribution poin}
```



```
M Hence.itremainsto be shownthat the two statements hold. We fist prove thesecond statement.This
```



```
t,
```



```
los,
comnecion willthen
T.{
*)
d,
```



```
M
Now that we have proventhe fist tand second
```


reotof fyendo o

apprabirationntio We havothat $O P T \geq O P T_{\text {walseed }}=\sum_{1 \leq i \leq n}\left(\left(x_{i} f_{i}\right)+\sum_{i \leq j \leq m}\left(y_{i, j} g_{i j j}\right)\right)$

$\leq \varepsilon_{1 \leq i \leq n} f_{i} n x_{i}+\varepsilon_{(i, j) \in\{(i, j) \in\{i \| \leq i \leq n j x[j \mid \leq j \leq n n\}\}} g_{i, j} n^{2} y_{i, j}$
$=n \varepsilon_{1 \leq i \leq n} f_{i} x_{i}+n^{2} \sum_{(i, j) \in\{(i, j) \in\{i|\leq i \leq n\rangle \times j \mid 1 \leq j \leq m\}\}} g_{i, j} y_{i, j}$
$\leq n^{2} \cdot\left(\varepsilon_{1 \leq i \leq n} f_{i} x_{i}+\varepsilon_{(i, j) \in\{(i, j) \in\{i \| \leq i \leq n\rangle \times(j \mid 1 \leq j \leq n)\}} g_{i, j} y_{i, j}\right)$
$=n^{2}\left(\sum_{1 \leq i \leq n}\left(x_{i} f_{i}\right)\right)+\left(\sum_{i \leq i \leq n} \sum_{i \leq j \leq m}\left(y_{i, j} g_{i, j}\right)\right)$
$=n^{2}\left(\sum_{i \leq i \leq n}\left(\left(x_{i} f_{i}\right)+\sum_{i \leq j \leq m}\left(y_{i, j} g_{i j j}\right)\right)\right)$
$=n^{2} O P T_{\text {relosed }}$
$\leq n^{2} O P T$
Herce, Power-cott is an n^{2} - approsimation algovith

