
Let	𝑥! be	decision	variables	indicating	which	distribution	units	should	be	build,	with	1 ≤ 𝑖 ≤ 𝑛; the value of 
variable 𝑥! is 0 if distribution unit 𝑢! should not be built, and 1 if distribution unit 𝑢! should be built.

1.

Furthermore, let 𝑦!,# be decision variables indicating which houses should be hooked up to which 
distribution units; that is, 𝑦!,# = 1 if and only if house 𝑗 should be connected to distribution unit 𝑖, for 1 ≤ 𝑖 ≤
𝑛 and 1 ≤ 𝑗 ≤ 𝑚. (Otherwise, 𝑦!,# = 0.)
Then, the 0/1-LP is as follows:
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We ignore the fact that g2,3 is undefined for ‘incompatible’ combinations of distribution points and 
houses.

Take 𝜏 = %
4 as threshold in the rounding scheme.2.
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To	see	why	this	algorithm	returns	a	valid	solution,	we	prove	the	following	statements:
If	a	connection	between	a	house	ℎ# and	a	distribution	point	𝑢! is	built,	then	the	distribution	point	
𝑢! is	built.

1.

All	houses	are	connected	to	at	least	one	distribution	point.2.
If	both	of	these	statements	hold,	then,	by	combining	these	statements,	we	find	that	all	houses	are	
connected	to	at	least	one	distribution	point	which	has	been	built.	This	ensures	the	solution	is	valid.

Hence,	it	remains	to	be	shown	that	the	two	statements	hold.	We	first	prove	the	second	statement.	This	
statement	follows	from	the	first	constraint	in	the	linear	program;	by	the	first	constraint,	we	have	that	
the	sum	over	all	the	decision	variables	𝑦!,# (which	determine	whether	a	connection	between	a	house	ℎ#
and	a	distribution	point	𝑢! is	built)	must	be	at	least	1.	Given	that	the	sum	can	range	over	at	most	𝑛
distribution	points	(when	𝑈 = 𝑈Wℎ#Y),	it	must	be	that	the	average	value	of	the	decision	variables	is	at	
least	%(.	But	this	also	implies	that	at	least	one	of	the	variables	must	have	a	value	of	at	least	%(,	i.e.	that	at	
least	one	connection	between	the	given	house	ℎ# and	some	distribution	point	is	built	(since	at	least	one	
connection	will	then	be	included	in	solC).	Since	this	holds	for	all	houses,	we	have	that	the	second	
statement	holds.
To	see	why	the	first	statement	holds,	we	consider	the	second	and	fourth	constraints.	From	the	fourth	
constraint,	we	see	that	the	decision	variables	𝑦!,# cannot	be	negative;	this	holds	even	in	the	relaxed	LP.	
From	line	5	of	the	algorithm,	we	know	that	a	connection	between	house	ℎ# and	distribution	point	𝑢! is	
built	if	and	only	if	the	value	of	the	decision	variable	𝑦!,# is	at	least	

%
(
.	This	means	that	the	sum	over	all	

decision	variables	𝑦!,# in	the	second	constraint	is	at	least	
%
(
whenever	the	distribtion	point	𝑢! needs	to	be	

built	(i.e.	because	some	house	ℎ# wants	to	connect	to	𝑢!).	Now,	we	note	that	the	second	constraint	
states	that	𝑛 ⋅ 𝑥! should	be	at	least	as	large	as	the	sum	of	the	decision	variables	𝑦!,#.	In	other	words,	if	
the	sum	over	the	decision	variables	is	at	least	%
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,	then	we	need	to	have	that	𝑛 ⋅ 𝑥! ≥ %
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.	But	

then,	by	line	4	of	the	algorithm,	we	have	that	the	distribution	point	𝑢! is	included	in	the	set	of	
distribution	points	which	need	to	be	built.	This	means	that,	whenever	a	connection	between	a	house	ℎ#
and	a	distribution	point	𝑢! is	built,	then	the	distribution	point	𝑢! is	built	as	well.	This	proves	the	first	
statement.

Now	that	we	have	proven	the	first	and	second	statement,	we	can	conclude	that	the	algorithm	(by	the	
reasoning	given	above)	must	give	a	valid	solution.
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