Exercise 4.1
donderdag 14 september 2023 15:43

Probably not: a counterexample probably consists of having values round down to 0 , which lets them be ignored by
algorithm.

$$
\operatorname{volue}^{*}\left(x_{i}\right)=\left\lfloor\frac{\text { value }\left(x_{i}\right)}{\Delta}\right\rfloor
$$

To rovethe running tire, we have that

$$
\text { value }^{*}\left(x_{i}\right) \leq\left[\frac{m x_{1} \leq i \leq n v a l u n\left(x_{i}\right)}{\Delta}\right]_{+1}=\left\lfloor\frac{n+s_{1 \leq i \leq n} \text { value }\left(x_{i}\right)}{\frac{\varepsilon}{n} L B}\right\rfloor+1=\left\lfloor\frac{n}{\varepsilon}\right\rfloor+1
$$

 computed station S^{*} 's feasible. It rom pis t_{0} th w that when $\left(s^{*}\right) \geq(1-\varepsilon) O P T$.

Because s* is opting for th new voting, we have value $\left(s^{*}\right) \geq$ value ${ }^{*}$ (sop). Moreover,

$$
\frac{\text { value }\left(x_{i}\right)}{\Delta}-1 \leq \operatorname{volhe}^{*}\left(x_{i}\right) \leq \frac{\text { value }\left(x_{i}\right)}{\Delta} \text {, where } \Delta=\frac{\varepsilon}{n} L B_{\text {. Hence, re here }}
$$

$$
\begin{aligned}
\text { value }\left(s^{*}\right) & =\varepsilon_{x_{i} \in s^{*}} \text { value }\left(x_{i}\right) \\
& \geq \varepsilon_{x_{i} \epsilon s^{*}} \Delta \text { value }\left(x_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { value }\left(x_{i}\right) \geq \Delta \text { value } *\left(x_{i}\right)=\Delta \Sigma_{x_{i t} S^{*}} \text { value }{ }^{*}\left(x_{i}\right) \\
& \text { value }\left(x_{i}\right) \leq\left(\text { value }\left(x_{i}\right)+1\right) \Delta \\
& \geq \Delta \cdot \sum_{x_{i} \in \epsilon_{\text {opT }}} \text { value }{ }^{*}\left(x_{i}\right) \\
& \geq \Delta \cdot\left(\sum_{x_{i \in S_{\text {opT }}}} \frac{\operatorname{vade}\left(x_{i}\right)}{\Delta}-1\right) \\
& =\left(\sum_{x i \in S_{\text {opt }}} \text { vane }\left(x_{i}\right)\right)-\left|s_{\text {opt }}\right| \Delta \\
& \geq\left(\sum_{x \in \in S_{\text {opt }}} \text { value }\left(x_{i}\right)\right)-n \cdot \Delta \\
& \geqslant \text { OPT } \quad-\varepsilon \cdot L B \\
& \geqslant O P T-\varepsilon \cdot O P T
\end{aligned}
$$

Thus, value $\left(s^{*}\right) \geq(1-\varepsilon)$.ORT.
Here, theorem 4.3 still bolts.

