
To	prove	the	approximation	ratio,	we	distinguish	between	3	cases:
All	jobs	are	large.	In	that	case,	we	obviously	get	an	optimal	solution	(by	line	13	of	the	algorithm)	
and	hence	the	required	approximation	ratio	of	1 + 𝜖 is	achieved.

1.

There	are	only	small	jobs.	In	this	case,	we	note	that	a	lower	bound	on	the	size	of	the	optimal	
solution	is	given	by	!

2
(since	we	have	two	machines,	one	of	which	must	run	at	least	half	of	the	total	

workload).	Furthermore,	the	maximum	difference	in	the	workloads	between	the	machines	in	the	
solution	computed	by	the	Greedy-Scheduling	algorithm	is	at	most	𝜖 ⋅ 𝑇.	To	see	why,	consider	that	
all	small	jobs	have	size	at	most	(infinitesimally	less	than)	𝜖 ⋅ 𝑇.	Hence,	if	the	difference	in	workload	
is	at	least	ϵ ⋅ 𝑇,	then	there	must	be	at	least	one	job	smaller	than	ϵ ⋅ 𝑇 running	on	the	machine	
determining	the	makespan	that	can	be	moved	to	the	other	machine	to	reduce	the	makespan.

2.

We	then	have	that	the	maximum	size	of	the	solution	computed	by	Greedy-Scheduling	is	at	most	
1
2
𝑇 + 1

2
𝜖𝑇.	(To	see	why,	note	that,	since	we	have	two	machines,	the	load	must	be	divided	among	

them.	This	gives	that	one	machine	has	load	"#𝑇 + 𝑥 and	the	other	has	load	
"
#𝑇 − 𝑥.	If	the	difference	

between	the	two,	which	is	given	by	"#𝑇 + 𝑥 − (
"
#𝑇 − 𝑥) = 2𝑥,	may	be	at	most	𝜖𝑇,	it	then	follows	

that,	in	the	worst	case,	𝑥 = "
# 𝜖𝑇.	This	gives	the	largest	machine	a	load	of	"#𝑇 +

"
# 𝜖𝑇.)	The	

approximation	ratio	achieved	by	the	algorithm	will	then	be	
!
"!$

!
"%!

&' =
!
"!$

!
"%!

!
"!

= 1 + 𝜖,	which	is	

indeed	the	maximum	allowable	approximation	ratio	for	a	PTAS.
There	are	both	large	and	small	jobs.	In	this	case,	we	can	distinguish	between	two	different	cases:

The	last	job	assigned	to	the	machine	which	determines	the	makespan	(i.e.	the	machine	with	
the	largest	load)	was	a	large	job.	In	this	case,	no	small	jobs	were	assigned	to	the	machine	
determining	the	makespan.	This	means	that	the	solution	must	be	optimal,	since	we	
effectively	have	the	same	solution	as	the	one	to	the	problem	consisting	of	only	the	large	
jobs.	Furthermore,	we	note	that	adding	jobs	to	the	problem	can	never	decrease	the	size	of	
the	optimal	solution,	and	hence,	if	the	solution	found	for	the	problem	including	the	small	
jobs	is	as	large	as	the	optimal	solution	to	the	problem	excluding	the	small	jobs,	then	the	
solution	found	must	be	optimal	for	the	problem	including	the	small	jobs	as	well.

a.

The	last	job	assigned	to	the	machine	which	determines	the	makespan	(i.e.	the	machine	with	
the	largest	load)	was	a	small	job.	This	means	that	the	machine	with	the	largest	load	must	
have	had	a	small	job	assigned	to	it	as	the	last	job.	But	in	that	case,	the	difference	in	load	
between	the	two	machines	may	be	at	most	(infinitesimally	less	than)	𝜖 ⋅ 𝑇,	as	the	last	job	
determining	the	makespan	(which	has	size	less	than	𝜖 ⋅ 𝑇)	would	otherwise	have	been	
assigned	to	the	other	machine.	From	this	point	on,	the	same	reasoning	as	given	under	case	
2	applies	and	hence	we	conclude	that	the	approximation	ratio	is	within	the	allowable	range	
for	a	PTAS.

b.

3.

Hence,	the	algorithm	achieves	the	required	approximation	ratio	for	a	PTAS.

Apply	Greedy-Scheduling	to	the	jobs	in	the	small jobs array,	initializing	its	state	such	that	the	large	
jobs	are	already	assigned	to	the	machines	as	determined	on	the	previous	line.

solution

solution

To	analyze	the	running	time,	we	consider	the	following:
Line	1	runs	in	𝑂(𝑛) time.1.
Line	2	runs	in	𝑂 (0"%1) time.2.
Line	3	runs	in	𝑂(𝑛) time.3.
Line	4	runs	in	𝑂(1) time.4.
Line	5	runs	in	𝑂(1) time.5.
The	loop	in	lines	6-12	runs	in	𝑂(𝑛) time	(since	all	lines	in	the	loop	
can	be	concluded	in	𝑂(1) time	and	the	loop	runs	for	𝑛 iterations).

6.

A	brute-force	search	over	2(
!
#) possible	options,	as	performed	in	line	

13,	runs	in	𝑂22(
!
#)3 time.

13.

Applying	the	Greedy-Scheduling	algorithm,	as	done	in	line	14,	runs	
in	𝑂(𝑛 log 2) = 𝑂(𝑛) time	(strictly	speaking,	𝑛 should	be	replaced	
by	the	size	of	the	filled-in	parts	of	the	small	jobs	array,	but	we	ignore	
this	for	simplicity).

14.

Line	15	runs	in	𝑂(1) time.15.

All	in	all,	the	algorithm	runs	in	𝑂22(
!
#) + 𝑛3 time,	which	satisfies	the	

demands	for	a	PTAS	(but	not	for	an	FPTAS).

Exercise	4.4
donderdag	14	september	2023 15:44

