Any valid solution for the (non-relaxed) 0/1-LP is also a valid solution for the relaxed LP. Thus: the optimal solution for	Pro
the relaxed LP is at least as good as the optimal solution for the 0/1-LP: $OPT_{relaxed} \leq OPT_{0/1}$.	ster 1.
OPT_{VC} = min weight of vertex cover for the graph G	
$OPT_{relaxed}$ = value of optimal solution to relaxed LP = $\sum_{v \in V} weight(v) \cdot x_v$ for the values x_v after solving the	
relaxed LP Lemma: $OPT_{uc} = OPT_{o/1} > OPT_{relayed}$	2.
	3. 4.

Let G be the input graph and C be the computed cover. Then WeightedVC - LP - Relaxation(G)

$$= \sum_{v \in C} weight(v)$$

$$\leq \sum_{v \in C} weight(v) \cdot 2x_v \text{ since } C = \{v \in V : x_v \ge 0.5\} \text{ (which implies } 2x_v \ge 1)$$

$$= 2 \sum_{v \in C} weight(v) \cdot x_v$$

$$\leq 2 \sum_{v \in V} weight(v) \cdot x_v \text{ since } x_v \ge 0 \text{ for all } v \in V$$

$$= 2 \cdot OPT_{relaxed}$$

$$\leq 2 \cdot OPT_{VC}$$

This *(combined with the fact that the algorithm returns a valid cover in polynomial time)* proves WeightedVC-LP-Relaxation is a 2-approximation algorithm for weighted vertex cover.

oblems can be solved using LP-relaxation by taking the following eps:

- . Formulate the problem as a 0/1-LP;
 - a. Define suitable decision variables;
 - b. Define cost function and constraints that model the problem, including 0/1-constraints;
- . Relax the 0/1-constraints;
- . Solve the relaxed LP and round variables;
- . Prove a bound on the approximation ratio using the solution to the relaxed LP as a lower bound.