Lecture 4.2

The goal of the knapsack problem is to select a set of items whose total weight is not too large, and whose total value is maximized.

More formally, the input is given as

- $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- weight $\left(x_{i}\right)$ is a positive number
- value $\left(x_{i}\right)$ is a positive number
- W is a positive number
and the goal is described as: 'Compute subset $S \subseteq X$ whose total value is maximized under the condition that its total weight is at most W.'

The global strategy of the PTAS we construct is as follows:

1. Replace the value of each item x_{i} by a new value, value $\left(x_{i}\right)$, which is a "small" integer;

- The optimal solution for the new values should be a good approximation of the optimal solution for the original values.

2. Solve the problem optimally for the new values;
a. The exact algorithm should run in polynomial time when items have "small" integer values.
3. Return the subset computed in step 2 as a solution for the original problem.
