Lecture 4.3

We have the following theorem:
Suppose all n item values in a knapsack instance are integers. Then we can compute an optimal solution in $O\left(n V_{\text {tot }}\right)$ time, where $V_{t o t}$ is the total value of all items.

We define weight $(S)=\sum_{x_{i} \in S}$ weight $\left(x_{i}\right)$ and $\operatorname{value}(S)=\sum_{x_{i} \in S} v a l u e\left(x_{i}\right)$, ie. the weight/value of a set is the total weight/value of the items in that set. Furthermore, we define S_{i} to be a set consisting of the first i items in X, ie. $S_{i}=\left\{x_{1}, \ldots, x_{i}\right\}$. Finally, we let $S_{0}=\emptyset$.

We are using a dynamic-programming strategy. As subproblems, we define (for $0 \leq i \leq n$ and $0 \leq j \leq V_{t o t}$) $A[i, j]=$ minimum weight of any subset $S \subseteq S_{i}$ whose total value is exactly j. We let $A[i, j]=\infty$ if no such subset S exists.
The table is useful because the maximum value of any subset $S \subseteq X$ with weight $(S) \leq W$ is equal to the largest j such that $A[n, j] \leq W$.

To solve this problem by dynamic programming, we first give a recursive formula for $A[i, j]$. Then, we compute all $A[i, j]$ by filling in a table. Finally, we find the largest j such that $A[n, j] \leq W$.

$$
\begin{aligned}
& A[i-1, j] \\
& \text { Yjoustiso ardothe (}(2) \text {) } j \\
& \operatorname{mi}\left(A[i-1, j], A\left[i-1-j-w h e n\left(x_{0}\right]\right]+\operatorname{wigh}\left(x_{i}\right)\right) \quad \text { othowine }
\end{aligned}
$$

