In the first step of constructing a PTAS for the knapsack problem, we need to replace the value of each item x_{i} by a new value, value $\left(x_{i}\right)$, which is a "small" integer. A trivial approach to replacing the value of each item by a new "small" integer value would be to simply round all values up. However, this approach does not work, as:

- The values can be too large (e.g. such that the running time becomes exponential in the number of inputs);
- This gives no control over the approximation ratio.

For a better approach, we round each value to the next multiple of Δ, for a suitable Δ.
After that, we divide by Δ to get "small" integers. All in all, we get that value $\left(x_{i}\right)=\left\lceil\frac{\text { value }\left(x_{i}\right)}{\Delta}\right\rceil$.
To pick a suitable Δ, we consider that we need that $A l g \geq(1-\epsilon) \cdot O P T=O P T-\epsilon \cdot O P T$. In other words, the total 'error' we are allowed to make in our solution is at most $\epsilon \cdot O P T$. Due to the rounding, the error on each item value is at most Δ. (This will be proven later.) Given that there are at most n items in any solution, we have that total error $\leq n \cdot \Delta$. This means that Δ should be picked such that $n \cdot \Delta \leq$ $\epsilon \cdot O P T$. One issue with setting this to an equality is that the value of $O P T$ is unknown. Instead, we can use a lower bound on OPT.

Thus, in the algorithm, we do:

1. $L B \leftarrow \max _{x_{i} \in X} \operatorname{value}\left(x_{i}\right)$ assuming weight $\left(x_{i}\right) \leq W$ for all $x_{i} \in X$; otherwise, remove violating items from the set first, since they are 'useless' anyway.
2. $\Delta \leftarrow \frac{\epsilon}{n} \cdot L B$
3. For each $x_{i} \in X$, set value $e^{*}\left(x_{i}\right) \leftarrow\left\lceil\frac{\text { value }\left(x_{i}\right)}{\Delta}\right\rceil$.

Let X^{*} be the set of items with these modified values and with the same weights as before.
4. $S \leftarrow \operatorname{IntValueKnapsack}\left(X^{*}, W\right)$
5. Return subset S of items computed in step 3 , but with original values.

