Lectures 4.5 & 4.6

dinsdag 12 september 2023 14:22

To prove that the algorithm is a PTAS, we need to show that:

- 1. The output is valid: the selected subset S must have total weight $\leq W$;
- 2. $KnapsackPTAS(X, W, \epsilon) \ge (1 \epsilon) \cdot OPT$
- 3. The running time is polynomial in n

Since the weights have not been changed as part of the approximation scheme, the weight of the subset reported by the algorithm remains at most W; therefore, the first condition is satisfied.

Let S be the subset of items computed by the algorithm, which is optimal for $value^*$.

Let S_{opt} be the optimal subset of the original values.

We need to show that $value(S) \ge \cdots \ge (1 - \epsilon) \cdot value(S_{opt}) = (1 - \epsilon) \cdot OPT$.

We already know that $value^*(S) \ge value^*(S_{opt})$ and that $value^*(x_i) = \left[\frac{value(x_i)}{\Delta}\right]$, where $\Delta = \frac{\epsilon}{n} \cdot LB$ and $LB = \max_{x_i \in X} value(x_i) \le OPT$. Now, we have that $\frac{value(x_i)}{\Delta} \le value^*(x_i) \le \frac{value(x_i)}{\Delta} + 1$.

We get

$$value(S) = \sum_{x_i \in S} value(x_i) \ge \sum_{x_i \in S} \Delta \cdot (value^*(x_i) - 1) = \Delta \cdot \left(\sum_{x_i \in S} value^*(x_i)\right) - |S| \cdot \Delta$$
$$\ge \Delta \cdot \left(\sum_{x_i \in S_{opt}} value^*(x_i)\right) - n \cdot \Delta \ge \left(\sum_{x_i \in S_{opt}} value(x_i)\right) - n \cdot \Delta = value(S_{opt}) - n \cdot \Delta$$
$$= value(S_{opt}) - \epsilon \cdot LB \ge value(S_{opt}) - \epsilon \cdot OPT = (1 - \epsilon) \cdot OPT$$

This proves out algorithm has the right approximation ratio for a PTAS: $KnapsackPTAS(X, W, \epsilon) \ge (1 - \epsilon) \cdot OPT$.

To show the third point, we consider that:

- The re-computation of item values takes O(n) time.
- Returning the subset *S* of items computed in the exact algorithm but with the original values takes O(n) time as well.
- To show the running time of the optimal algorithm, we consider that the running time of the optimal algorithm is $O(n V_{tot})$, where V_{tot} is the total value of the items in X^* . From the definition of Δ , we find that $V_{tot} = \sum_{x_i \in X} value^*(x_i) \le n \cdot \max_i value^*(x_i) = n \cdot$

$$\max_{i} \left[\frac{value^{*}(x_{i})}{\Delta} \right] = n \cdot \left[\max_{i} \frac{value(x_{i})}{\Delta} \right] = n \cdot \left| \max_{i} \frac{value(x_{i})}{\frac{\epsilon}{n} \cdot LB} \right| = n \cdot \left[\frac{n}{\epsilon} \right] = O\left(\frac{n^{2}}{\epsilon} \right), \text{ which gives that}$$

the running time of the optimal algorithm is $O\left(\frac{n^3}{\epsilon}\right)$.

All in all, we can conclude that the running time is polynomial in *n* and in $\frac{1}{\epsilon}$. Hence, *KnapsackPTAS* is an FPTAS.