
The	replacement	policy	would	work	as	follows:	for	each	block,	store	whether	or	not	it	was	accessed	for	an	entry	in	
one	of	the	last	two	rows.	Then:

If	there	is	a	block	which	will	never	be	used	anymore,	evict	that	block.a.
If	there	is	no	such	block,	evict	a	block	which	was	accessed	for	an	entry	in	the	last	two	rows.b.

1.

Effectively,	this	will	lead	to	the	first	m-2	rows	being	handled	optimally	(without	duplicate	fetching),	and	the	last	
two	rows	being	fetched	continuously.	The	first	m-2	rows	will	take	𝑂(𝑛/𝐵) I/os,	whereas	the	last	two	rows	will	
take	𝑚 = √𝑛� I/Os.	Together,	this	gives	𝑂 *"# + √𝑛

� , I/Os.

For	simplicity	of	notation,	let	$# = 𝑧.	We	note	that	$# denotes	the	number	of	blocks	which	fit	into	memory.	Because	
we	have	that	𝑚 > 2𝑧,	we	have	that	no	single	row	can	fit	into	memory	at	a	given	time.	(This	effectively	allows	us	to	
ignore	any	cases	where	a	block	wraps	around	to	the	next	row;	by	the	time	the	algorithm	works	on	the	last	column,	
it	cannot	have	that	blocks	from	the	first	column	(which	may	overlap	with	those	from	the	last	column)	are	still	in	
memory.	In	particular:	we	can	state	that,	for	each	column,	all	entries	in	that	column	are	placed	in	separate	blocks.)

2.

Now,	we	have	that	the	number	of	blocks	which	have	to	be	read	to	iterate	over	a	single	column	is	given	by	𝑚 > 2𝑧.	
Since	only	𝑧 blocks	fit	into	memory,	this	means	that,	for	each	column	over	which	the	algorithm	iterates,	at	least	
𝑚 − 𝑧 blocks	need	to	be	read	from	memory.	Additionally,	to	make	place	for	these	𝑚 − 𝑧 blocks,	at	least	𝑚 − 𝑧
blocks	need	to	be	evicted	from	memory.	Hence,	we	have	that	any	replacement	policy	must,	for	each	column	over	
which	the	algorithm	iterates,	perform	at	least	2(𝑚 − 𝑧) = 2𝑚 − 2𝑧 I/Os.	Since	we	have	that	𝑚 > 2𝑧,	it	follows	
that	2𝑚 − 2𝑧 > 𝑚,	which	implies	the	number	of	I/Os	for	each	column	is	at	least	𝑚.	Now,	since	the	algorithm	
iterates	over	𝑚 columns,	we	have	that	the	total	number	of	I/Os	must	be	at	least	𝑚 ⋅ 𝑚 = 𝑚% = 𝑛;	in	other	words,	
the	number	of	I/Os	will	be	Ω(𝑛),	for	any	replacement	policy.
Probably	not.	1024	bytes	equals	1	kilobyte,	and	having	100.000	rows	with	such	size	would	give	rise	to	100.000	
kilobyte	=	100	megabyte.	This	will	clearly	fit	in	the	internal	memory	of	most	modern	computers.	However,	it	
should	be	noted	that	this	does	not	fit	in	the	CPU	cache	(and,	therefore,	the	problem	of	I/O	being	slow	is	still	
relevant).

3.

The	running	times	of	the	algorithms	would	basically	be	the	same	(at	least	asymptotically),	although	there	would	
be	some	small	differences.	In	particular,	it	should	be	noted	that	the	column-by-column	algorithm	would	only	need	
to	fetch	a	block	twice	is	when	that	block	'wraps	around'	from	the	end	of	one	row	to	the	next.	The	number	of	such	
occurrences	is	at	most	𝑚 − 1 (since	the	last	row	cannot	have	a	block	which	wraps	around).	Hence,	the	number	of	
blocks	which	need	to	be	read	increases	from	"

#
(in	the	row-by-row	algorithm)	to	"

#
+ 𝑂(𝑚) (in	the	column-by-

column	algorithm).	With	𝑚 = $
%#
,	this	gives	us	𝑂 *"

#
, + 𝑂 *$

%#
, I/Os	for	the	column-by-column	algorithm.	Using	

that	𝑛 = 𝑚% = $!

&#!
,	this	gives	us	a	total	number	of	I/Os	which	is	given	as	𝑂 *"

#
+ $

%#
, = 𝑂 *$

!

&#"
+ $

%#
, = 𝑂 8$

#
*$
#!
+

1,9.	Using	the	tall-cache	assumption	(𝑀 ≥ 𝐵%),	we	then	find	that	this	is	equal	to	𝑂 *$
#
⋅ $
#!
, = 𝑂 *$

!

#"
,,	which	is	

equal	to	the	bound	one	would	obtain	for	the	row-by-row	algorithm.	(However,	the	running	time	would	most	likely	
be	larger	for	the	column-by-column	algorithm;	just	not	by	a	term/factor	which	changes	the	asymptotic	bounds.)

Note:	still	need	to	check	whether	the	right	blocks	are	being	evicted	(i.e.	we	might	need	space	for	two	blocks	
per	row).

a.

Note:	check	whether	there	are	issues	if	blocks	wrap	around	to	the	next	row.	(Then,	some	blocks	may	need	
to	be	fetched	twice.)

b.

4.

Exercise	5.2
Saturday,	23	September	2023 22:17

