
Without	loss	of	generality,	assume	the	nodes	of	the	tree	are	numbered	with	labels	from	1 to	𝑛.	Then,	we	can	
observe	that	the	difference	in	label	between	a	node	and	its	child	halves	for	each	level	we	go	down	in	the	tree.	As	
long	as	the	difference	in	labels	remains	at	least	𝐵,	the	nodes	with	these	labels	must	be	in	separate	blocks;	hence,	
reading	in	these	nodes	and	their	corresponding	blocks	will	take	Θ %log!

"
#) I/Os.	Now,	for	any	𝑥,	it	holds	(in	a	

complete	and	balanced	binary	search	tree)	that	if	the	difference	between	the	label	of	a	node	𝑣 and	the	label	of	its	
child	𝑤 is	𝑥,	then	the	number	of	nodes	in	the	subtree	rooted	at	𝑤 is	at	most	2𝑥 − 1.	Thus,	at	some	point	on	the	
path	from	the	root	to	a	leaf	(more	precisely,	when	the	difference	between	a	node	and	its	child	becomes	$!𝐵),	then	
we	must	have	that	the	size	of	the	subtree	rooted	in	that	point	becomes	𝐵,	at	which	point	this	subtree	(which	
contains	the	remainder	of	the	path	to	a	leaf)	is	contained	in	at	most	two	blocks.

(i)

If	the	memory	can	only	contain	a	single	block,	then	it	holds	that,	for	each	remaining	level	of	the	tree,	it	might	(in	
the	worst	case)	be	the	case	that	continuously	swapping	which	of	these	two	blocks	in	memory	is	necessary.	In	that	
case,	the	number	of	I/Os	for	this	part	of	the	tree	required	would	grow	as	𝑂(log! 𝐵).	In	the	best	case,	however,	or	
when	the	memory	can	contain	at	least	two	blocks,	then	only	a	constant	number	of	I/Os	is	required	to	load	these	
blocks.	Hence,	the	number	of	this	I/Os	for	this	part	of	the	tree	is	at	least	Ω(1). In total, this gives at least
Ω %log!

"
+ 1) = Ω %log!

"
#) I/Os and at most 𝑂 %log!

"
+ log! 𝐵) = 𝑂 %log! %"# ⋅ 𝐵)) = 𝑂(log! 𝑛) I/Os.

A	more	efficient	way	of	forming	blocks	stores	every	subtree	of	height	⌊log! 𝐵⌋ in	a	single	block.	In	this	strategy,	it	
is	necessary	to	only	load	a	single	block	for	every	𝐵 levels	of	the	tree	(ignoring	any	rounding),	which	takes	at	most	
𝑂 %%&'! "

%&'! #
) = 𝑂(log(𝑛) I/Os.

(ii)

This	is	somewhat	similar	to	the	concept	of	B-trees,	in	the	sense	that	𝐵 elements	of	the	tree	are	combined	to	form	
a	unit	of	the	tree,	through	which	the	algorithms	go	once.	The	main	difference	is	that	in	a	B-tree,	the	𝐵 elements	
are	combined	into	a	single	node,	whereas	this	solution	combines	them	into	a	subtree.	From	the	I/O	perspective,	
however,	this	behaves	very	similarly.

Exercise	7.1
maandag	2	oktober	2023 17:15

