
The	height	of	a	binary	tree	with	𝑛 nodes	is	log! 𝑛.	Consider	a	root-to-leaf	path,	which	
must	have	length	(log! 𝑛) − 1.	Now,	assume	this	path	visits	fewer	than	log" 𝑛 = #$%! &

#$%! "
blocks.	This	would	imply	that,	at	some	point	on	the	path,	there	exists	a	sub-path	(say	
𝑣', 𝑣!, … , 𝑣()', 𝑣()	where	more	than	log! 𝐵 nodes	are	in	the	same	block.	Then,	we	have	
that	the	subtree	of	size	𝐵 rooted	in	𝑣' (which	has	height	log! 𝐵)	must	contain	at	least	one	
node	which	is	not	part	of	the	same	block.	But	that	implies	that	any	root-to-leaf	path	going	
through	that	node	would	use	fewer	than	log! 𝐵 nodes	from	some	block	(given	that	blocks	
cannot	be	re-entered).	Given	that	the	same	reasoning can	also	be	applied	to	any	paths	
going	through	this	node,	we	can	then	conclude	that	there	must	exist	at	least	one	path	
where	fewer	than	log! 𝐵 vertices	from	a	block	are	used	on	average.	This	suggests	that	the	
number	of	blocks	on	that	path	must	be	greater	than	log" 𝑛 = #$%! &

#$%! "
(which	proves	the	

claim).
Honestly,	I	am	not	convinced	at	this	point.a.

(i)

Assume	that	the	condition	in	(i)	is	not	met;	that	is,	we	have	that	there	exists	a	root-to-leaf	
path	which	leaves	a	block	and	later	re-enters	the	same	block.	Then,	we	modify	the	
blocking	strategy	as	follows:

Consider	the	node	where	the	block	is	re-entered;	we	swap	this	node	from	the	block	
for	the	node	where	the	block	was	first	left.

a.

Repeat	this	procedure	until	no	blocks	are	re-entered	anymore.b.

(ii)

By	applying	this	strategy,	the	number	of	visited	blocks	does	not	increase;	given	that	any	
path	which	goes	through	the	node	where	the	formerly	re-entered	block	first	left	its	block	
already	passed	through	the	formerly	re-entered	block,	we	have	that	the	number	of	blocks	
on	any	path	going	through	the	formerly	re-entered	block	cannot	grow.	
Assume	that	the	condition	in	(i)	is	not	met;	that	is,	we	have	that	the	nodes	in	at	least	one	
block	do	not	form	a	connected	component.	Then,	we	can	modify	the	blocking	as	follows:

(iii)

Attempt	2
We	only	use	the	implication	of	the	given	property:	whenever	a	root-to-leaf	path	leaves	a	
block,	it	will	not	re-enter	that	block.	(Although	this	is	not	necessary	for	this	part	of	the	
exercise,	limiting	ourselves	to	this	assumption	simplifies	the	proof	for	the	second	question.)

(i)

We	prove	by	induction	that,	if	the	blocking	strategy	is	such	that	this	condition	is	met,	then	
there	is	always	a	root-to-leaf	path	which	visits	at	least	'

!
log"*' 𝑛 blocks.	Note	that	this	

suffices	to	prove	that	any	path	visits	Ω(log" 𝑛) blocks,	since	'
!

log"*' 𝑛 = '
!

#$%" &
#$%" "*'

=
Ω(log" 𝑛).
Base	case	(𝑛 ≤ 𝐵)
In	this	case,	we	have	that	we	must	visit	at	least	one	block,	whereas	'! log+*' 𝑛 =
'
!

#$%" &
#$%" "*'

≤ 1 (given	that	log" 𝑛 ≤ 1 for	𝑛 ≤ 𝐵,	and	 '
! #$%" "*'

< 1).	Hence,	the	claim	
holds.
Inductive	step	(𝑛 > 𝐵)
In	this	case,	we	start	by	considering	that	every	path	from	the	root	to	a	leaf	must	at	least	
visit	the	block	which	contains	the	root.	Furthermore,	we	have	that	there	are	𝑛 − 𝐵 nodes	
outside	this	block,	and	these	are	split	over	(at	most)	𝐵 + 1 subtrees	(since	there	are	𝐵
nodes	in	the	block	containing	the	root,	and	the	number	of	edges	connecting	these	nodes	
to	a	node	outside	the	block	is	at	most	𝐵 + 1).	This	means	that,	on	average,	these	subtrees	
have	&)"

"*'
nodes.	If	the	subtrees	contain	at	least	this	many	nodes	on	average,	then	there	

must	also	be	at	least	one	subtree	which	contains	this	many	nodes.	We	now	consider	the	
paths	going	to	a	leaf	in	this	subtree.	By	the	induction	hypothesis,	at	least	one	of	these	
paths	must	visit	at	least	'

!
log"*' 2&)"

"*'
3 blocks,	plus	one	additional	block	to	account	for	

the	block	containing	the	root	node	of	the	tree.	Thus,	at	least	one	of	these	paths	visits	at	
least	1 + '

!
log"*' 2&)"

"*'
3 = 1 + '

!
(log"*'(𝑛 − 𝐵) − log"*'(𝐵 + 1)) = 1 + '

!
(log"*'(𝑛 −

𝐵) − 1) = '
!

+ '
!

log"*'(𝑛 − 𝐵) = '
!

(log"*'(𝑛 − 𝐵) + 1) = '
!

(log"*'(𝑛 − 𝐵) +

log"*'(𝐵 + 1)) = '
!

log"*'((𝑛 − 𝐵)(𝐵 + 1)) = '
!

log"*'(𝑛𝐵 − 𝐵! + 𝑛 − 𝐵) ≥
'
!

log"*' 𝑛,	where	the	last	step	holds	because	of	the	following:
𝑛 and 𝐵 are both integers, and 𝑛 > 𝐵, so we have 𝑛 ≥ 𝐵 + 1○
Then, 𝑛𝐵 ≥ (𝐵 + 1)𝐵 = 𝐵! + 𝐵○
Hence, we have 𝑛𝐵 − 𝐵! − 𝐵 ≥ 𝐵! + 𝐵 − 𝐵! − 𝐵 = 0○
Thus, 𝑛𝐵 − 𝐵! + 𝑛 − 𝐵 ≥ 𝑛.○

This	proves	the	claim.

Hence,	it	must	be	the	case	that	for	a	blocking	strategy	which	meets	the	condition	laid	out	
at	the	top,	there	is	always	a	root-to-leaf	path	which	visits	at	least	Ω(log" 𝑛) blocks.

To	see	why	there	must	be	a	root-to-leaf	path	that	visits	Ω(log" 𝑛) blocks	for	any	blocking	
strategy,	we	consider	that	any	blocking	strategy	which	does	not	satisfy	the	property	used	
in	the	proof	of	the	first	question	must	have	the	following:

There	must	be	nodes	𝑢,	𝑣,	and	𝑤,	such	that	𝑣 is	a	child	𝑢,	𝑤 is	a	descendant	of	𝑣,	𝑢
and	𝑤 are	in	the	same	block,	and	𝑣 is	not	in	the	same	block	as	𝑢 and	𝑤.

(ii)

We	note	that,	in	this	situation,	it	is	possible	to	swap	the	nodes	𝑣 and	𝑤;	that	is,	we	can	
add	node	𝑤 to	the	block	𝑣 was	in,	while	adding	node	𝑣 to	the	block	𝑤 was	in.	This	does	
not	increase	the	number	of	blocks	visited	by	any	root-to-leaf	path	going	through	𝑢,	as,	in	
the	new	situation,	we	have	that	paths	going	through	𝑢,	𝑣 and	𝑤 (or	which	do	not	visit	
either	of	𝑣 and	𝑤)	visit	an	equal	number	of	blocks,	whereas	paths	not	going	through	𝑣
might	visit	fewer	(but	not	more)	blocks.	Furthermore,	performing	this	swap	leads	to	a	
blocking	strategy	which	is	closer	to	one	satisfying	the	property	from	the	first	question.	
Hence,	it	is	always	possible	to	transform	a	grouping	of	nodes	into	blocks	to	one	satisfying	
the	property	from	the	first	question	without	increasing	the	number	of	blocks	on	any	root-
to-leaf	path,	and	hence,	the	number	of	visited	blocks	on	any	root-to-leaf	path	in	a	blocking	
strategy	which	does	not	satisfy	the	property	must	be	at	least	as	large	as	the	number	of	
visited	blocks	in	a	blocking	strategy	which	does	satisfy	the	property	(i.e.	Ω(log" 𝑛)).	This	
implies	that	any	blocking	strategy	must	have	a	root-to-leaf	path	which	visists	at	least	
Ω(log" 𝑛) blocks.

Exercise	7.2
maandag	2	oktober	2023 17:15


