Exercise 7.6

maandag 2 oktober 2023 17:16

- 1. Turn the undirected graph G = (V, E) into a directed graph $G^* = (V, E^*)$, where the edges are obtained by directing every edge from the node with smaller index to the node with higher index: $E^* = \{(v_i, v_i) \in E | i < j\}$. Note that this new graph has its nodes stored in topological order by construction. Furthermore, note that this graph G^* can be obtained by simply ignoring any edges which are not part of the set E^* in the adjacency-list representation of the graph, and hence, no additional I/Os are necessary at this point to use G^* .
- 2. Now, define a function f on the nodes as follows. (In this application, we do not need to introduce labels $\lambda(v_i)$ to define *f*.)
 - a. If $|N_{in}(v_i)| = 0$, then $f(v_i) = 1$. 6 N
 - b. If $|N_{in}(v_i)| > 0$, then $f(v_i) = \min_{c \in \{j \mid 1 \le j \le d_{max}+1\} \setminus \{f(v_{in}) \mid v_{in} \in N_{in}(v_i)\}} c$.
- 3. Now, let the *f*-value of each node denote the color assigned to that node. Then, this algorithm will assign at most d_{max} + 1 different colors. To see why, consider that, for each node in the graph, the algorithm either assigns color 1 (if the node has no incoming edges) or the lowest-numbered color which is not already in used by one of the neighbors of the node. Since each node has at most d_{max} incoming edges, this means that d_{max} + 1 colors must be eerlain how, e.g. bottettole remed, the find mining missing element no node will be assigned a color higher than $d_{max} + 1$ (given that at least one of the $d_{max} + 1$ colors must be unused by at least one of the neighbors).
- Note that f is a local function, and that each $f(v_i)$ can be computed in $O(SORT(1 + |N_{in}(v_i)|))$ I/Os from the 4. *f*-values of its in-neighbors. Then, it follows from theorem 7.2 that the total number of I/Os performed by the algorithm is O(SORT(|V| + |E|)).