Exercise 7.6

1. Turn the undirected graph $G=(V, E)$ into a directed graph $G^{*}=\left(V, E^{*}\right)$, where the edges are obtained by directing every edge from the node with smaller index to the node with higher index: $E^{*}=\left\{\left(v_{i}, v_{j}\right) \in E \mid i<j\right\}$. Note that this new graph has its nodes stored in topological order by construction. Furthermore, note that this graph G^{*} can be obtained by simply ignoring any edges which are not part of the set E^{*} in the adjacency-list representation of the graph, and hence, no additional I/Os are necessary at this point to use G^{*}.
2. Now, define a function f on the nodes as follows. (In this application, we do not need to introduce labels $\lambda\left(v_{i}\right)$ to define f.)
a. If $\left|N_{i n}\left(v_{i}\right)\right|=0$, then $f\left(v_{i}\right)=1$. \square
b. If $\left|N_{i n}\left(v_{i}\right)\right|>0$, then $f\left(v_{i}\right)=\min _{c \in\left\{j \mid 1 \leq j \leq d_{\text {max }}+1\right\} \backslash\left\{f\left(v_{i n}\right) \mid v_{\text {in }} \in N_{\text {in }}\left(v_{i}\right)\right\}} c$.
3. Now, let the f-value of each node denote the color assigned to that node. Then, this algorithm will assign at most $d_{\max }+1$ different colors. To see why, consider that, for each node in the graph, the algorithm either assigns color 1 (if the node has no incoming edges) or the lowest-numbered color which is not already in used by one of the neighbors of the node. Since each node has at most $d_{\max }$ incoming edges, this means that no node will be assigned a color higher than $d_{\max }+1$ (given that at least one of the $d_{\max }+1$ colors must be 4. Note that f is a local function, and that each $f\left(v_{i}\right)$ can be computed in $O\left(\operatorname{SORT}\left(1+\left|N_{\text {in }}\left(v_{i}\right)\right|\right)\right) \mathrm{I} / \mathrm{Os}$ srom the f-values of its in-neighbors. Then, it follows from theorem 7.2 that the total number of I / Os performed by the algorithm is $O(\operatorname{SORT}(|V|+|E|))$.
