
Consider	the	following	algorithm	outline:
Re-interpret	the	undirected	graph	𝐺 as	a	directed	graph	𝐺∗,	where	the	edges	are	changed	as	to	
point	from	a	vertex	with	lower	index	to	a	vertex	with	higher	index;	i.e.	if	𝐺∗ = (𝑉, 𝐸∗),	then	𝐸∗ =
()𝑣" , 𝑣#+ ∈ 𝐸|𝑖 < 𝑗1.	This	does	not	cost	extra	I/Os,	since	we	can	simply	ignore	any	adjacency	list	
entries	where	𝑖 ≥ 𝑗.

1.

Define	a	function	𝑓 on	the	nodes	of	𝐺∗ as	follows:
𝑓(𝑣") = 1 if	𝑖 = 1 (note:	this	assumes	the	vertex	indices	range	from	1 to	𝑛)a.

If	𝑖 > 1,	then	𝑓(𝑣") = {
1 𝑖𝑓 ∑ 𝑓(𝑣"$)�

&!"∈(!"(&!) = ∑ 𝑓(𝑣)�
&∈+&#∈,|./#0"1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
b.

2.

This	function	is	not	local,	given	that	the	sum	∑ 𝑓(𝑣)�
&∈+&#∈,|./#0"1 requires	elements	from	nodes	

other	than	the	in-neighbors	as	well.	Therefore,	theorem	7.2	cannot	be	applied	directly.	However,	it	
is	easy	to	see	how	this	issue	can	be	worked	around:	given	that	this	sum	effectively	sums	all	the	𝑓-
values	obtained	so	far,	we	can	let	the	algorithm	keep	a	separate	variable	which	simply	stores	the	
sum’s	value	and	increments	it	as	needed.	(This	costs	no	more	than	1	block	of	internal	memory,	and	
we	assume	this	memory	is	available.)

3.

It	is	now	straightforward	to	see	that	the	set	of	vertices	𝐶 = {𝑣"|𝑓(𝑣") = 1} form	a	clique;	any	
vertex	added	to	this	set	will	have	the	property	that,	whenever	it	is	added,	the	number	of	vertices	in	
its	in-neighbors	which	is	in	the	set	is	equal	to	the	number	of	vertices	which	is	in	the	set.	This	clique	is	
also	maximal;	any	vertex	which	did	not	satisfy	this	property	at	the	point	where	it	was	considered	
cannot	be	part	of	the	clique	(given	that	there	was	at	least	one	node	which	was	added	to	the	clique,	
but	which	was	not	in	the	in-neighbors	of	the	non-added	vertex).

4.

Given	that	the	function	𝑓 is	local	(after	addressing	the	caveat	under	point	3),	and	that	this	function	
can	be	computed	in	𝑂)𝑆𝑂𝑅𝑇(1 + |𝑁"$(𝑣")|)+ I/Os,	it	follows	from	theorem	7.2	that	this	algorithm	
(outline)	can	be	used	to	compute	a	maximal	clique	in	𝑂)𝑆𝑂𝑅𝑇(|𝑉| + |𝐸|)+ I/Os.

5.

Exercise	7.9
maandag	2	oktober	2023 17:16

