Let b bethe menberof bits of storage available for thealpoitth
Lets fetheret of all subsets of $n=1$ distictitions from $[x]$
Let X be a set if stream of ire $m-1$, oneforeach rubjetis 5 .

 σ_{1} ad σ_{1}^{\prime}, such that the deteminite streaming alpoithen is in the xunemang
 such that $j \in \sigma_{\text {, }}$ and $j \in \sigma_{1}^{\prime}$.
how, consider unit herpes whet the alyorith presses $\sigma_{1} \circ \sigma_{2}$ ard $\sigma_{1}^{\prime} \circ \sigma_{2}$, for $\sigma_{2}=\langle j\rangle$. Them, tea alyoith will return

- The some answer for both inputs, given that te ste f rintromaning σ_{2} y equal.
 is not distant from these items
- The arses in fri the input $\sigma_{1}{ }^{\circ} \sigma_{2}$, as σ_{1} consists of m. . distinct it hen, and j is distinct form thereiter.
Buothis gives a cortratidition ; free the assumption that $2^{b}<1 X /$ muse be warn; thus, we need ts hare that the number of bits fo complies with $2^{b} \geq|x|$. She minimum value of b for which this holds is give by

$$
\begin{aligned}
& 2^{b}=|x|=|s|=\binom{n}{m-1} \geq\left(\frac{n}{m-1}\right)^{m-1}=2^{\log _{2}\left(\left(\frac{n}{m-1}\right)^{m-1}\right)} \\
&\left.=2^{(m-1) \log _{2}\left(\frac{n}{m-1}\right)}\right) \\
& b=(m-1) \log _{2}\left(\frac{n}{m-1}\right)=\Omega\left(m \log _{2}\left(\frac{n}{m}\right)\right)
\end{aligned}
$$

