
The	following	deterministic	streaming	algorithm	can	solve	the	two	missing	items	problem	using	
a	sub-linear	number	of	bits:

Input:
A	stream	⟨𝑎!, … , 𝑎"#$⟩ in	the	vanilla	model,	where	𝑛 is	the	size	of	the	universe,	and	all	the	𝑎%
are	distinct.

Initialize:
𝑠𝑢𝑚 ← 0
𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑠𝑢𝑚 ← 0

Process(𝒂𝒊):
𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑎%1.
𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑠𝑢𝑚 ← 𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑠𝑢𝑚 + 𝑎%$2.

Output:
The	missing	items	are	𝑗! and	𝑗$ with:
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Explanation	of	the	equations	for	j! and	j"
Let	𝑗!,	𝑗$ be	the	two	missing	items.
Note	that	we	have	∑ 𝑖"
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Substituting the value for 𝑗! obtained from the equation for 𝑠𝑢𝑚 (𝑗! = ∑ (𝑖)"
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equation for squaredsum gives us the following:
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This	equation	can	be	solved	using	the	quadratic	formula.
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Note	that	we	are	only	interested	in	the	positive	square	root,	given	that	𝑗$ ≥ 0.
Using the value of 𝑗$ obtained from the equations above, we can then obtain 𝑗!:
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Proof	of	correctness
Admittedly	somewhat	informal
We	note	that	only	two	distinct	natural
numbers	𝑗! and	𝑗$ can	satisfy	the	equations	
worked	out	to	the	left	of	here.	Given	that	
the	sum	of	the	items	in	the	stream	and	the	
missing	items,	as	well	as	the	sum	of	squares	
of	these	items,	are	given	by	constants,	we	
have	that	the	values	of	𝑗! and	𝑗$ must	be	
correct.

Storage	requirements	analysis
This	algorithm,	as	part	of	its	process	phase,	
only	needs	to	store	the	numbers	𝑠𝑢𝑚 and	
𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑠𝑢𝑚.	Since	(the	bigger	of)	these	
numbers	cannot	grow	larger	than	𝑛 ⋅ 𝑛$, we 
have that they can each be stored in at 
most log$ 𝑛- = 3 log$ 𝑛 bits, which is 
clearly sublinear. Furthermore, since the 
powers of 𝑛 used	in	the	computation	of	the	
values	of	𝑗! and	𝑗$ are	constant,	the	number	
of	bits	used	to	compute	the	output	phase	is	
also	sublinear	in	𝑛.	Hence,	the	total	number	
of	bits	of	storage	needed	to	compute	the	
two	missing	items	is	sublinear.

Exercise	8.2
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