Exercise 8.6

Suppose a deterministic streaming algorithm, say Alg, for Similar-Items uses at most s bits of storage. Then Alg can be in at most 2^{s} different states at any point in time. Now, consider the set of streams X defined as follows. Let \mathbb{S} be the set of all subsets of $m-1$ distinct elements from the universe $[n]$ which do not contain two similar items (ie. items a_{t} and a_{f} such that $\left|a_{t}-a_{f}\right|=1$), but where all elements are a multiple of $3^{\text {ahbahr }}$. For each subset $S \in \mathbb{S}$, put a stream σ into X whose elements are exactly the items in S. Note that

$$
\begin{aligned}
|X|=|\mathbb{S}|= & \binom{n / 3}{m-1} \geq\left(\frac{n / 3}{m-1}\right)^{m-1}=2^{(m-1) \log _{2} \frac{n / 3}{m-1}} \\
& \text { we hare }\binom{n}{k} \geq\left(\frac{n}{l}\right)^{m} \quad \text { since } a^{b}=2^{\log _{2}(a b)}=2^{b \log _{2}(a)}
\end{aligned}
$$

Hence, when $s<(m-1) \log _{2} \frac{n / 3}{m-1}$, there must be two different streams $\sigma_{1} \in X$ and $\sigma_{1}^{\prime} \in X$ such that Alg is in exactly the same state after processing σ_{1} as it would be after processing σ_{1}^{\prime}.

Given that all items in X are distinct, we know that σ_{1} and σ_{1}^{\prime} do not have similar items. Furthermore, given that each stream in X (including σ_{1} and σ_{1}^{\prime}) only contains elements which are multiples of 3 , we can conclude that, for each element a_{k} which is a multiple of 3 , it must be the case that $a_{k}-2, a_{k}-1, a_{k}+1$ and $a_{k}+2$ are not in the stream.
Now, since σ_{1} and σ_{1}^{\prime} are different streams, each having distinct items, there must be an item $\ell \in$ $[n]$ such that $\ell \in \sigma_{1}$ and $\ell \notin \sigma_{1}^{\prime}$. Now, consider the streams $\kappa_{1}=\sigma_{1} \circ\langle(\ell+1)\rangle$ and $\kappa_{1}^{\prime}=\sigma_{1}^{\prime} \circ$ $\langle(\ell+1)\rangle$; these are the streams with the element $\ell+1$ appended to them. Clearly, streams κ_{1} and κ_{1}^{\prime} have length m. Furthermore, since ℓ is in stream σ_{1}, it must be that ℓ is a multiple of 3 . This implies that $\ell+2$ is not in the streams σ_{1} and σ_{1}^{\prime}, nor in any of the streams κ_{1} and κ_{1}^{\prime}. Thus (given that σ_{1} and σ_{1}^{\prime} do not contain similar items), κ_{1} and κ_{1}^{\prime} can only contain a similar item if $\ell+1$ is similar to some item in the given stream. Since $\ell+2$ is not in κ_{1} or κ_{1}^{\prime}, it follows that the only item to which $\ell+1$ can be similar is the item ℓ. But ℓ is only in κ_{1} and not in κ_{1}^{\prime}. This implies that the algorithm should give the answer Yes for the stream κ_{1} and No for the stream κ_{1}^{\prime}. But this is impossible, given that the state before processing the item $\ell+1$ is equal for both streams, and processing the same item from the same starting state cannot lead to different final states. This means that, if Alg uses less than $(m-1) \log _{2} \frac{n / 3}{m-1}=\Omega\left(m \log _{2} \frac{n}{m}\right)$ bits, then it cannot be correct on all inputs. Thus, any deterministic streaming algorithm that solves Similar-Items exactly must use at least $\Omega\left(m \log _{2} \frac{n}{m}\right)$ bits.

Note: we need the constraint that $m<\frac{n}{3}$ to ensure that there are $\binom{n / 3}{m-1}$ streams which do not have a similar item; upon picking more than $n / 3$ items, one would have that at least one item needs to be picked twice. (Usually, one requires that $m<\frac{n}{2}$ to avoid trivially having a similar item, but we note that two distinct elements which are a multiple of 3 cannot be similar; furthermore, an element is not similar to itself in the definition given in the problem. If the problem were to state that elements are similar if $\left|a_{i}-a_{j}\right| \leq 1$, then the bound $m<\frac{n}{6}$ would be necessary.)
note: lower bound (poofs) may appear 'at some pout '

