
Input:
A	stream	〈𝑎!, … , 𝑎"⟩ of	𝑚 distinct	items	in	the	vanilla	model.

Initialize:
Choose	a	suitable	integer	𝑘 ≥ 1 to	obtain	the	desired	success	probability.

Process(𝒂𝒊):
For	𝑗 = 1 to	𝑘

Note:	the	next	line	makes	two	assumptions:
The	random	variable	which	is	used	to	determine	whether	to	set	the	set	element	should	have	its	value	
determined	separately	for	each	iteration	of	the	loop.

1.

The	value	of	𝑖 gives	the	counter	of	elements	(i.e.	for	the	𝑏$% element	being	processed,	we	need	that	𝑖 = 𝑏).2.
With	probability	!& ,	do	𝐽' ← 𝑎&
The	previous	line	could	be	implemented	as	follows:

𝑟 ← 𝑅𝑎𝑛𝑑𝑜𝑚(1, 𝑖)
If	𝑟 = 1 then

𝐽' ← 𝑎&
End	if

End	for

Output:
Return	the	median	of	the	set	𝐽.

Argument	for	correctness: we	note	that,	in	the	original	streaming	algorithm	for	the	median	problem,	the	main	property	
required	is	that,	for	each	element	added	to	the	set	𝐽,	the	index	of	that	element	was	picked	from	a	uniform	random	
distribution	of	size	𝑚 (i.e.	each	element	from	the	stream	was	equally	likely	to	be	picked).	The	algorithm	above	replicates	
this	property;	to	see	why,	we	inductively	argue	the	following	claim:

Claim: after	processing	item	𝑎',	Pr[𝐽ℓ = 𝑎&] = !
' for	1 ≤ 𝑖 ≤ 𝑗 for	all	1 ≤ ℓ ≤ 𝑘.

Base	case: if	𝑗 = 1,	then	!& = 1,	and	hence	Pr[𝐽ℓ = 𝑎!] = 1 for	all	ℓ.

Inductive	step: if	𝑗 > 1,	then	the	probability	of	setting	𝐽ℓ = 𝑎' is	equal	to	
!
'.	To	see	why	Pr[𝐽ℓ = 𝑎&] = !

' for	1 ≤

𝑖 < 𝑗,	we	use	the	induction	hypothesis;	by	the	induction	hypothesis,	we	have	that	Pr[𝐽ℓ = 𝑎&] = !
')! immediately 

before processing element 𝑎' . From the algorithm, it follows that, with probability 1 − !
' = '

' − !
' = ')!

' , the 

item stored in 𝐽ℓ is left unchanged. Hence, the probability of Pr[𝐽ℓ = 𝑎&] = !
')! immediately after processing 

element 𝑎' is given by ')!' ⋅ !
')! = !

'. This proves the claim.
Hence, after processing each element, the probability of having taken a given element is given by a uniform random 
distribution. From this point on, it can be seen that the proof for lemma 9.6 (and hence, theorem 9.7) still holds for 
this new algorithm, given that we do not use an (asymptotically) increased amount of storage compared to the old 
algorithm.

Exercise	9.4
Monday,	9	October	2023 14:22


