
First	pass
Input: a	stream	of	length	𝑚 in	the	vanilla	model.

Initialize:
for	𝑗 = 1 to	𝑘√𝑚� do

𝑝𝑜𝑠" ← 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑚)
end	for

Process(𝒂𝒊):
for	𝑗 = 1 to	𝑘√𝑚� do

if	𝑝𝑜𝑠" = 𝑖 then
𝑠𝑎𝑚𝑝𝑙𝑒" = 𝑎$

end	for

Output:
The	samples	need	to	be	kept.

Second	pass
Input: the	same	stream	of	length	𝑚 in	the	vanilla	model.

Initialize:
for	𝑗 = 1 to	𝑘√𝑚� do

𝑟𝑎𝑛𝑘" ← 0
end	for

Process(𝒂𝒊):
for	𝑗 = 1 to	𝑘√𝑚� do

if	𝑠𝑎𝑚𝑝𝑙𝑒" < 𝑎$ then
𝑟𝑎𝑛𝑘" ← 𝑟𝑎𝑛𝑘" + 1

end	for

Output:
If	any	of	the	items	have	rank	9%&'

( : or	;%&'
( <,	return	them	as	the	median;	otherwise,	the	ranks	of	

each	sampled	position	need	to	be	kept.

Third	pass
Input: the	same	stream	of	length	𝑚 in	the	vanilla	model.

Initialize:
Select	the	sampled	items	which	are	closest	to	the	median,	from	each	side.
That	is,	let	𝑟𝑎𝑛𝑘_𝑙𝑜𝑤 ← max)'*"*+√-� . ∧12345!*6"#$

%
78 𝑟𝑎𝑛𝑘".	If	no	such	item	exists,	let	

𝑟𝑎𝑛𝑘_𝑙𝑜𝑤 ← 0.
And	let	𝑟𝑎𝑛𝑘_ℎ𝑖𝑔ℎ ← min)'*"*+√-� . ∧12345!9:"#$

% ;8 𝑟𝑎𝑛𝑘".	If	no	such	item	exists,	let	

𝑟𝑎𝑛𝑘_ℎ𝑖𝑔ℎ ← 𝑚.
Let	𝑙𝑜𝑤 be	the	(unique)	item	with	rank	𝑟𝑎𝑛𝑘_𝑙𝑜𝑤.	(If	𝑟𝑎𝑛𝑘_𝑙𝑜𝑤 = 0 because	no	item	existed,	
set	𝑙𝑜𝑤 ← 0.)
Let	ℎ𝑖𝑔ℎ be	the	(unique)	item	with	rank	𝑟𝑎𝑛𝑘_ℎ𝑖𝑔ℎ.	(If	𝑟𝑎𝑛𝑘_ℎ𝑖𝑔ℎ = 𝑚 because	no	item	
existed,	set	ℎ𝑖𝑔ℎ ← 𝑛.)
Let	𝑆 be	a	list

Process(𝒂𝒊):
If	𝑙𝑜𝑤 < 𝑎$ < ℎ𝑖𝑔ℎ

Append	𝑎$ to	𝑆

Output:
Sort	the	list	𝑆 using	a	sorting	algorithm	(preferably	one	which	uses	a	low	amount	of	storage).
Go	over	the	items	in	𝑆,	and	pick	one	of	the	items	with	rank	9%&'

(
: or	;%&'

(
< (note:	there	can	be	

either	one	or	two	such	items).	For	this,	it	is	useful	to	note	that	the	first	item	in	S	will	have	rank	
𝑟𝑎𝑛𝑘_𝑙𝑜𝑤 + 1.
Return	the	picked	item.

Proof	of	probability	of	storage
If	both	the	items	𝑙𝑜𝑤 and	ℎ𝑖𝑔ℎ have	a	rank	
at	most	√𝑚� from	the	median,	then	the	
number	of	items	which	need	to	be	stored	in	
the	third	pass	is	at	most	2√𝑚� = 𝑂(√𝑚� )
(and	storing	such	items	can	be	done	in	
𝑂(√𝑚� log(𝑛)) bits).	It	remains	to	be	shown	
that	the	probability	of	the	items	being	
picked	in	such	a	way	can	be	made	at	least	
0.95.

To	this	end,	let	𝑋" denote	an	indicator	
random	variable	defined	as	follows:

𝑋" = 1 if	there	is	the	𝑗<= sample	
picked	in	the	first	pass	has	rank	at	
least	;%&'

(
< and	at	most	;%&'

(
< +

𝑘√𝑚� ;

•

𝑋" = 0 otherwise.•

We	have	that	PrQ𝑋" = 1R = √%�

%
= '

√%� ,	as	the	
random	variable	will	have	value	1	if	and	only	
if	one	of	the	√𝑚� out of 𝑚 options which 
fall in the bound are chosen; due to 
uniform randomness of the choice, each 
option then has an equal chance of √-�

-
=

'
√-� to be chosen.

Now,	we	have	that	at	least	one	of	the	𝑘√𝑚�

samples is	within	√𝑚� from the median 
(and at least as large as the median) if and 
only if 𝑋" = 1 for at least one 𝑗. Stated 
differently, the probability of at least one 
sample complying with our demands is 
Pr[𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑠] = 1 −
Pr[𝑛𝑜𝑛𝑒 𝑐𝑜𝑚𝑝𝑙𝑦] = 1 −
(Pr[𝑜𝑛𝑒 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑙𝑦])#?@-ABC? = 1 −
(1 − Pr[𝑜𝑛𝑒 𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑠])# ?@-ABC? = 1 −

h1 − '

√-� i
+√-�

.
By symmetry, the same reasoning can be 
applied to obtain the probability that we 
have one sample at most the median, with 
rank at most √𝑚� below the median.

Let us use the simpler version of the 
probability, as obtained from the Markov 
inequality.

Thus, we desire to have 1 −
2 Pr[𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑠] ≥ 0.95

1 − 2𝑘 ≥ 0.95
1 − 0.95 ≥ 2𝑘
0.05 ≥ 2𝑘
0.025 ≥ 𝑘

We	desire	to	have	that	the	probability	that	
at	least	one	item	is	appropriate	(on	each	
side	of	the	median)	is	at	least	0.95.	Thus,	we	
need:

Alternatively,	consider	the	Markov	
inequality.	Define	a	random	variable	𝑋 =
∑ 𝑋"

�
" . Then, 𝐸[𝑋] = 𝐸Q∑ 𝑋"

�
" R =

∑ 𝐸[𝑋"]�
" = ∑ +

√-�
�
" = √𝑚� ⋅ +

√- � = 𝑘.
We obtain that the probability 
Pr[𝑋 ≥ 1] = Pr w𝑋 ≥ '

+ ⋅ 𝐸[𝑋]x ≤ '
$
&

= 𝑘

by the Markov inequality.

Alternatively,	use	the	Chernoff	bound.	Then,	we	have	
that	Pr[𝑋 ≥ 1] ≥ Pr[𝑋 > 1] = PrQ𝑋 > (1+? )𝐸[𝑋]R

Let	us	use	the	inequality	suggested	
in	the	exercise.	Then,	we	obtain	
Pr[𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑠] = 1 −

h1 − '
√-� i

+√-�

> 1 − h'
(i

+
.

Pr[𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖𝑡𝑒𝑚 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 ℎ𝑎𝑠 𝑟𝑎𝑛𝑘 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 √𝑚�  from the median]
⋅ Pr[𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖𝑡𝑒𝑚 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 ℎ𝑎𝑠 𝑟𝑎𝑛𝑘 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 √𝑚�  from the median] ≥ 0.95
Pr[𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑠]( ≥ 0.95

|1 − }1 −
1

√𝑚� ~
+√-�

�

(

≥ 0.95

Using the inequality in the exercise, we obtain

}1 − h1 − '

√-� i
+√-�

~ > 1 − h'
(i

+
, and hence, we need

1 − }
1
2

~
+

≥ 0.95

0.05 ≥ }
1
2~

+

0.05 ≥ 2D+

log( 0.05 ≥ −𝑘
Hence, we take 𝑘 ≥ − log( 0.05 ≈ 4.32
Thus, it is possible with probability at least 0.95 to use at most 4.32√𝑚� log 𝑛 = 𝑂(√𝑚� log 𝑛) bits 
of storage to store the items in between 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ, and from these items, the median can be 
exactly determined.

Note:	𝑘 will	be	defined	in	the	proof.

Proof	of	correctness
Arguably	somewhat	informal
The	answer	returned	here	is	correct	because	of	the	following:	in	the	third	pass,	we	simply	go	
over	all	elements	between	the	two	elements	which	are	closest	(from	each	side)	to	the	median.	
Then,	we	return	as	median	an	item	which	has	appropriate	rank	(i.e.	9%&'

( : or	;%&'
( <),	which	can	

be	accurately	determine	because	the	second	pass	has	given	us	the	rank	of	the	items	closest	to	
the	median.

Proof	of	storage	use
The	first	pass,	as	described	on	the	right,	needs	to	sample	approximately	4.32√𝑚� log 𝑛 =
𝑂(√𝑚� log 𝑛) samples;	the	random	numbers	which	need	to	be	stored	only	add	a	constant	
factor	to	this	term.
The	second	pass	stores	one	number	(a	rank),	which	is	at	most	log 𝑛 bits. This is clearly doable 
in the allotted amount of storage.
The third pass stores, under the situation for which the probability was bounded in pass 
one, at most 2√𝑚� items in the list 𝑆. This also fits in the allowed amount of storage.

Hence, the total algorithm uses at most 𝑂(√𝑚� log 𝑛) bits of storage with probability at 
least 0.95. (Note	that	the	algorithm	always	comes	to	an	exact	solution;	however,	in	the	worst	
case	(with	extremely	low	probability)	it	might	need	to	store	all	items	in	the	third	pass.)

Exercise	9.5
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