i. For each one of the k answers computed, the probability for each one of them being too large is given by
$\operatorname{Pr}[\widetilde{D}>2 D(\sigma)]=\frac{7}{10}$. If the $\frac{k}{2}$-smallest answer is reported, then the probability of the answer being too large is
given by the probability of at least $\frac{k}{2}$ answers being too large. This probability is given by $(\operatorname{Pr}[\widetilde{D}>2 D(\sigma)])^{\frac{k}{2}}=$
$\left(\frac{7}{10}\right)^{\frac{k}{2}}>\frac{7}{10}$ for $k \geq 2$.
ii. We should instead report the answer which is in the 'middle' of the 'correct range'. Here, we have that the smallest $\frac{1}{5}$ answers are likely too small, the next $\frac{1}{10}$ answers are likely in the acceptable range, and the highest $\frac{7}{10}$ answers are likely too high.
Thus, we choose the $\frac{1}{5}+\frac{1}{10}=\frac{1}{5}+\frac{1}{20}=\frac{5}{20}=\frac{1}{4}$ th lowest answer.
iii. See below.
iv. You would always report the smallest answer; since no answer is too small, the smallest answer is always most likely to fall in the acceptable range.
v. The new algorithm would give a wrong answer only if all of the k answers are wrong. Since the probability of one of the k answers being wrong is equal to $\frac{9}{10}$, the probability of k of them being wrong is $\left(\frac{9}{10}\right)^{k}$. This means that the success probability is given by $1-\left(\frac{9}{10}\right)^{k}$.
iii. Let X_{i} denote an indicator random variable which is 1 if the $i^{\text {th }}$ answer is too large, and let Y_{i} denote an indicator random variable which is 1 if the $i^{t h}$ answer is too small. Let $X=\sum_{i=1}^{k} X_{i}$ and $Y=\sum_{i=1}^{k} Y_{i}$. Now, we know that $E\left[X_{i}\right]=\frac{7}{10}$ and $E\left[Y_{i}\right]=\frac{1}{5}$. By linearity of expectation, we then have that $E[X]=\frac{7 k}{10}$ and $E[Y]=\frac{k}{5}$. We then have that the final answer is not a good estimate if either the number of too-large-answers is at least $\frac{3 k}{4}$ or if the number of too-small-answers is at least $\frac{k}{4}$. Bounds on these probabilities are given by
$\operatorname{Pr}\left[X>\frac{3 k}{4}\right]=\operatorname{Pr}\left[X>\left(1+\frac{1}{14}\right) \cdot E[X]\right]<\left(\frac{e^{\frac{1}{14}}}{\left(1+\frac{1}{14}\right)^{1+\frac{1}{14}}}\right)^{\frac{7 k}{10}}$

$$
\operatorname{Pr}\left[Y>\frac{k}{4}\right]=\operatorname{Pr}\left[X>\left(1+\frac{1}{4}\right) \cdot E[Y]\right]<\left(\frac{e^{\frac{1}{4}}}{\left(1+\frac{1}{4}\right)^{1+\frac{1}{4}}}\right)^{\frac{k}{5}}
$$

$$
\begin{aligned}
& (1+?) \frac{7}{10}=\frac{3}{4} \\
& \frac{28}{40}+? \frac{28}{40}=\frac{30}{40}
\end{aligned}
$$

Then, it follows that the probability of an answer not being a good estimate is
$\operatorname{Pr}[$ answer is a good estimate $]>1-\left(\frac{e^{\frac{1}{14}}}{\left(1+\frac{1}{14}\right)^{1+\frac{1}{14}}}\right)^{\frac{7 k}{10}}-\left(\frac{e^{\frac{1}{4}}}{\left(1+\frac{1}{4}\right)^{1+\frac{1}{4}}}\right)^{\frac{k}{5}}$

$$
\begin{aligned}
& (1+7) \frac{1}{5}=\frac{1}{4} \\
& \frac{4}{20}+\frac{? \cdot 4}{20}=\frac{5}{20}
\end{aligned}
$$

$$
? \cdot 4=1
$$

$$
?=\frac{1}{4}
$$

$$
\begin{aligned}
& \downarrow \\
& ? \frac{2 \theta}{40}=\frac{2}{40} \\
& \downarrow \\
& ? \cdot 2 \theta=2 \\
& ?=\frac{1}{14}
\end{aligned}
$$

defiee indiuator candon voristles

$$
x_{i}=\left\{\begin{array}{l}
1 \\
1 \\
\text { if } \\
\text { oter arise }
\end{array}\right. \text { wermot to torge }
$$

$$
X=\sum_{i=1}^{k} X_{i}=\# a_{\text {wworstat orenet to }} \text { brge }
$$

$$
\Rightarrow \text { compute } E[X] \text { arduse Chernoff bound }
$$

$$
\begin{aligned}
E[x] & =E\left[\sum_{i=1}^{l} x_{i}\right] \\
& =\sum_{i=1}^{\ell} E\left[x_{i}\right] \\
& =\sum_{i=1}^{l} \operatorname{br}\left[x_{i=1}\right] \\
& =k \cdot \frac{3}{10} \\
& =\frac{3 k}{10}
\end{aligned}
$$

$$
\text { Cheroff found: in }[X>(1+\delta) E[X]]<\left(\frac{e^{\delta}}{(1+\delta)^{+\delta \delta}}\right) E[x]
$$

$$
\operatorname{Pr}\left[x>\frac{k}{2}\right]=\operatorname{Pr}\left[x>\frac{5}{3} E[x]\right]<\left(\frac{e^{\frac{2}{3}}}{\left(\frac{5}{3}\right)^{\frac{5}{3}}}\right)^{\frac{3 k}{10}}<(0.84)^{3 b / 10}
$$

$$
\text { Pr [arrwer tor loyge }]=1-B_{r}[\text { arswerme tor lenge }]
$$

$$
>1-\left(0 . d_{4}\right)^{\frac{3 k}{10}}
$$

the truank, te e reator the probleligy

$$
\begin{aligned}
& \text { answer is not tor longe } \Leftrightarrow \text { at lewstanfofthe answers not tollonge } \\
& \text { Wewatc bound Br [(wumberof Arrwey not too lugge) } \left.\geq \frac{k}{2}\right]
\end{aligned}
$$

