Lecture 12.1 donderdag 5 oktober 2023 13:51

Expectation values are linear: E[X + Y] = E[X] + E[Y] and $E[cX] = c \cdot E[x]$. Note that $E[X \cdot Y] = E[X] \cdot E[Y]$ only holds if X and Y are independent.

Indicator random variables are 1 if an event occurs, and 0 if an event does not occur.

Some useful results

If an experiment is successful with probability p, and the experiment is repeated until success, then E[#trials until success $] = \frac{1}{p}$.

Markov inequality: for non-negative random variable X and any t > 0, we have $\Pr[X > t \cdot E[X]] < \frac{1}{t}$.

Take a set $X_1, ..., X_k$ to be independent indicator random variables, interpreted such that $X_i = 1$ if the *i*th trial is unsuccessful. Let $X = \sum_{i=1}^{k} X_i$, which can be interpreted as the number of unsuccessful trials. Then, E[X] is the expected number of unsuccessful trials. The Chernoff bound for Poisson

trials then states that, for any $\delta > 0$, we have that $\Pr[X > (1 + \delta)E[X]] < \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{E[X]}$.