Lecture 12.2

The median problem considers m distinct items in a vanilla model stream. The rank of an item is $1+$ the number of items smaller than that item.
The median of σ is an item of rank $\left[\frac{m+1}{2}\right\rfloor$ or $\left[\frac{m+1}{2}\right\rceil$. Note that, in this definition, there can be two medians!

An approximate median has a rank close to the rank of the median. More formally, an ϵ-approximate median is an item a_{i} with $\left\lfloor\left(\frac{1}{2}-\epsilon\right)(m+1)\right] \leq \operatorname{rank}\left(a_{i}\right) \leq\left[\left(\frac{1}{2}+\epsilon\right)(m+1)\right]$. This means that the error in the rank is at most $\epsilon(m+1)$.

